1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE TypeFamilies #-}
#if __GLASGOW_HASKELL__ >= 702
{-# LANGUAGE DeriveGeneric #-}
#endif
-- | A data type similar to @Data.Either@ that accumulates failures.
module Data.Validation
(
-- * Data type
Validation(..)
-- * Constructing validations
, validate
, validationNel
, fromEither
, liftError
-- * Functions on validations
, validation
, toEither
, orElse
, valueOr
, ensure
, codiagonal
, validationed
, bindValidation
-- * Prisms
-- | These prisms are useful for writing code which is polymorphic in its
-- choice of Either or Validation. This choice can then be made later by a
-- user, depending on their needs.
--
-- An example of this style of usage can be found
-- <https://github.com/qfpl/validation/blob/master/examples/src/PolymorphicEmail.hs here>
, _Failure
, _Success
-- * Isomorphisms
, Validate(..)
, revalidate
) where
import Control.Applicative (Applicative (pure, (<*>)), (<$>))
import Control.DeepSeq (NFData (rnf))
import Control.Lens (over, under)
import Control.Lens.Getter ((^.))
import Control.Lens.Iso (Iso, Swapped (..), from, iso)
import Control.Lens.Prism (Prism, prism)
import Control.Lens.Review (( # ))
import Data.Bifoldable (Bifoldable (bifoldr))
import Data.Bifunctor (Bifunctor (bimap))
import Data.Bitraversable (Bitraversable (bitraverse))
import Data.Data (Data)
import Data.Either (Either (Left, Right), either)
import Data.Eq (Eq)
import Data.Foldable (Foldable (foldr))
import Data.Function (id, ($), (.))
import Data.Functor (Functor (fmap))
import Data.Functor.Alt (Alt ((<!>)))
import Data.Functor.Apply (Apply ((<.>)))
import Data.List.NonEmpty (NonEmpty)
import Data.Monoid (Monoid (mappend, mempty))
import Data.Ord (Ord)
import Data.Semigroup (Semigroup ((<>)))
import Data.Traversable (Traversable (traverse))
import Data.Typeable (Typeable)
#if __GLASGOW_HASKELL__ >= 702
import GHC.Generics (Generic)
#endif
import Prelude (Maybe (..), Show)
-- | An @Validation@ is either a value of the type @err@ or @a@, similar to 'Either'. However,
-- the 'Applicative' instance for @Validation@ /accumulates/ errors using a 'Semigroup' on @err@.
-- In contrast, the @Applicative@ for @Either@ returns only the first error.
--
-- A consequence of this is that @Validation@ has no 'Data.Functor.Bind.Bind' or 'Control.Monad.Monad' instance. This is because
-- such an instance would violate the law that a Monad's 'Control.Monad.ap' must equal the
-- @Applicative@'s 'Control.Applicative.<*>'
--
-- An example of typical usage can be found <https://github.com/qfpl/validation/blob/master/examples/src/Email.hs here>.
--
data Validation err a =
Failure err
| Success a
deriving (
Eq, Ord, Show, Data, Typeable
#if __GLASGOW_HASKELL__ >= 702
, Generic
#endif
)
instance Functor (Validation err) where
fmap _ (Failure e) =
Failure e
fmap f (Success a) =
Success (f a)
{-# INLINE fmap #-}
instance Semigroup err => Apply (Validation err) where
Failure e1 <.> b = Failure $ case b of
Failure e2 -> e1 <> e2
Success _ -> e1
Success _ <.> Failure e2 =
Failure e2
Success f <.> Success a =
Success (f a)
{-# INLINE (<.>) #-}
instance Semigroup err => Applicative (Validation err) where
pure =
Success
(<*>) =
(<.>)
-- | For two errors, this instance reports only the last of them.
instance Alt (Validation err) where
Failure _ <!> x =
x
Success a <!> _ =
Success a
{-# INLINE (<!>) #-}
instance Foldable (Validation err) where
foldr f x (Success a) =
f a x
foldr _ x (Failure _) =
x
{-# INLINE foldr #-}
instance Traversable (Validation err) where
traverse f (Success a) =
Success <$> f a
traverse _ (Failure e) =
pure (Failure e)
{-# INLINE traverse #-}
instance Bifunctor Validation where
bimap f _ (Failure e) =
Failure (f e)
bimap _ g (Success a) =
Success (g a)
{-# INLINE bimap #-}
instance Bifoldable Validation where
bifoldr _ g x (Success a) =
g a x
bifoldr f _ x (Failure e) =
f e x
{-# INLINE bifoldr #-}
instance Bitraversable Validation where
bitraverse _ g (Success a) =
Success <$> g a
bitraverse f _ (Failure e) =
Failure <$> f e
{-# INLINE bitraverse #-}
appValidation ::
(err -> err -> err)
-> Validation err a
-> Validation err a
-> Validation err a
appValidation m (Failure e1) (Failure e2) =
Failure (e1 `m` e2)
appValidation _ (Failure _) (Success a2) =
Success a2
appValidation _ (Success a1) (Failure _) =
Success a1
appValidation _ (Success a1) (Success _) =
Success a1
{-# INLINE appValidation #-}
instance Semigroup e => Semigroup (Validation e a) where
(<>) =
appValidation (<>)
{-# INLINE (<>) #-}
instance Monoid e => Monoid (Validation e a) where
mappend =
appValidation mappend
{-# INLINE mappend #-}
mempty =
Failure mempty
{-# INLINE mempty #-}
instance Swapped Validation where
swapped =
iso
(\v -> case v of
Failure e -> Success e
Success a -> Failure a)
(\v -> case v of
Failure a -> Success a
Success e -> Failure e)
{-# INLINE swapped #-}
instance (NFData e, NFData a) => NFData (Validation e a) where
rnf v =
case v of
Failure e -> rnf e
Success a -> rnf a
-- | 'validate's an @a@ producing an updated optional value, returning
-- @e@ in the empty case.
--
-- This can be thought of as having the less general type:
--
-- @
-- validate :: e -> (a -> Maybe b) -> a -> Validation e b
-- @
validate :: Validate v => e -> (a -> Maybe b) -> a -> v e b
validate e p a = case p a of
Nothing -> _Failure # e
Just b -> _Success # b
-- | 'validationNel' is 'liftError' specialised to 'NonEmpty' lists, since
-- they are a common semigroup to use.
validationNel :: Either e a -> Validation (NonEmpty e) a
validationNel = liftError pure
-- | Converts from 'Either' to 'Validation'.
fromEither :: Either e a -> Validation e a
fromEither = liftError id
-- | 'liftError' is useful for converting an 'Either' to an 'Validation'
-- when the @Left@ of the 'Either' needs to be lifted into a 'Semigroup'.
liftError :: (b -> e) -> Either b a -> Validation e a
liftError f = either (Failure . f) Success
-- | 'validation' is the catamorphism for @Validation@.
validation :: (e -> c) -> (a -> c) -> Validation e a -> c
validation ec ac v = case v of
Failure e -> ec e
Success a -> ac a
-- | Converts from 'Validation' to 'Either'.
toEither :: Validation e a -> Either e a
toEither = validation Left Right
-- | @v 'orElse' a@ returns @a@ when @v@ is Failure, and the @a@ in @Success a@.
--
-- This can be thought of as having the less general type:
--
-- @
-- orElse :: Validation e a -> a -> a
-- @
orElse :: Validate v => v e a -> a -> a
orElse v a = case v ^. _Validation of
Failure _ -> a
Success x -> x
-- | Return the @a@ or run the given function over the @e@.
--
-- This can be thought of as having the less general type:
--
-- @
-- valueOr :: (e -> a) -> Validation e a -> a
-- @
valueOr :: Validate v => (e -> a) -> v e a -> a
valueOr ea v = case v ^. _Validation of
Failure e -> ea e
Success a -> a
-- | 'codiagonal' gets the value out of either side.
codiagonal :: Validation a a -> a
codiagonal = valueOr id
-- | 'ensure' ensures that a validation remains unchanged upon failure,
-- updating a successful validation with an optional value that could fail
-- with @e@ otherwise.
--
-- This can be thought of as having the less general type:
--
-- @
-- ensure :: e -> (a -> Maybe b) -> Validation e a -> Validation e b
-- @
ensure :: Validate v => e -> (a -> Maybe b) -> v e a -> v e b
ensure e p =
over _Validation $ \v -> case v of
Failure x -> Failure x
Success a -> validate e p a
-- | Run a function on anything with a Validate instance (usually Either)
-- as if it were a function on Validation
--
-- This can be thought of as having the type
--
-- @(Either e a -> Either e' a') -> Validation e a -> Validation e' a'@
validationed :: Validate v => (v e a -> v e' a') -> Validation e a -> Validation e' a'
validationed f = under _Validation f
-- | @bindValidation@ binds through an Validation, which is useful for
-- composing Validations sequentially. Note that despite having a bind
-- function of the correct type, Validation is not a monad.
-- The reason is, this bind does not accumulate errors, so it does not
-- agree with the Applicative instance.
--
-- There is nothing wrong with using this function, it just does not make a
-- valid @Monad@ instance.
bindValidation :: Validation e a -> (a -> Validation e b) -> Validation e b
bindValidation v f = case v of
Failure e -> Failure e
Success a -> f a
-- | The @Validate@ class carries around witnesses that the type @f@ is isomorphic
-- to Validation, and hence isomorphic to Either.
class Validate f where
_Validation ::
Iso (f e a) (f g b) (Validation e a) (Validation g b)
_Either ::
Iso (f e a) (f g b) (Either e a) (Either g b)
_Either =
iso
(\x -> case x ^. _Validation of
Failure e -> Left e
Success a -> Right a)
(\x -> _Validation # case x of
Left e -> Failure e
Right a -> Success a)
{-# INLINE _Either #-}
instance Validate Validation where
_Validation =
id
{-# INLINE _Validation #-}
_Either =
iso
(\x -> case x of
Failure e -> Left e
Success a -> Right a)
(\x -> case x of
Left e -> Failure e
Right a -> Success a)
{-# INLINE _Either #-}
instance Validate Either where
_Validation =
iso
fromEither
toEither
{-# INLINE _Validation #-}
_Either =
id
{-# INLINE _Either #-}
-- | This prism generalises 'Control.Lens.Prism._Left'. It targets the failure case of either 'Either' or 'Validation'.
_Failure ::
Validate f =>
Prism (f e1 a) (f e2 a) e1 e2
_Failure =
prism
(\x -> _Either # Left x)
(\x -> case x ^. _Either of
Left e -> Right e
Right a -> Left (_Either # Right a))
{-# INLINE _Failure #-}
-- | This prism generalises 'Control.Lens.Prism._Right'. It targets the success case of either 'Either' or 'Validation'.
_Success ::
Validate f =>
Prism (f e a) (f e b) a b
_Success =
prism
(\x -> _Either # Right x)
(\x -> case x ^. _Either of
Left e -> Left (_Either # Left e)
Right a -> Right a)
{-# INLINE _Success #-}
-- | 'revalidate' converts between any two instances of 'Validate'.
revalidate :: (Validate f, Validate g) => Iso (f e1 s) (f e2 t) (g e1 s) (g e2 t)
revalidate = _Validation . from _Validation
|